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Anatomy of Glycosynthesis: Structure and
Kinetics of the Humicola insolens Cel7B
E197A and E197S Glycosynthase Mutants

polysaccharides govern a diverse range of cellular func-
tions, including energy storage, cell wall structure, cell-
cell interactions and signaling, host-pathogen interac-
tions, and protein glycosylation [1–6] Because these
functions, especially those in which carbohydrate moie-
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ceptor alcohol, resulting in synthesis via transglycosyla-
tion. The product is, however, necessarily also a sub-The formation of glycoconjugates and oligosaccha-
strate for the hydrolytic reaction, and tight kinetic orrides remains one of the most challenging chemical
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relatively modest yields.glycosidases have been successfully harnessed but

In 1998, a powerful alternative chemo-enzymatic routerequire tight kinetic or thermodynamic control. “Gly-
to carbohydrate synthesis was reported [10]. Site-directedcosynthases,” specifically engineered glycosidases
mutation of the enzymatic nucleophilic carboxylate ofthat catalyze the formation of glycosidic bonds from
a retaining exo-glycosidase, initially to alanine, gener-glycosyl donor and acceptor alcohol, are an emerging
ated an enzyme that was hydrolytically inert. When incu-range of synthetic tools in which catalytic nucleophile
bated with �-glucosyl fluoride, which mimics the high-mutants are harnessed together with glycosyl fluoride
energy covalent intermediate (Figure 1A), these mutantdonors to generate powerful and versatile catalysts.
glycosidases are able to synthesize product in high yieldHere we present the structural and kinetic dissection
(Figure 1B). Since the development of the original Agro-of the Humicola insolens Cel7B glycosynthases in
bacterium sp. �-glucosidase mutant, successful “glyco-which the nucleophile of the wild-type enzyme is mu-
synthases” have been developed on a range of templatestated to alanine and serine (E197A and E197S). 3-D
from both endo- and exo-acting �-glycosidases (forstructures reveal the acceptor and donor subsites and
example, [6, 11, 12–17]). Recently, the first “�-glycosyn-the basis for substrate inhibition. Kinetic analysis
thase,” which synthesis �-1,4 and �-1,6 bonds, has beenshows that the E197S mutant is considerably more
described [18], marking a significant expansion of theactive than the corresponding alanine mutant due to
glycosynthase repertoire.a 40-fold increase in kcat.

The Humicola insolens endoglucanase Cel7B is a re-
taining �-glycoside hydrolase that serves a biologicalIntroduction
role as part of the secreted cellulolytic apparatus of the
fungus. As such, its substrates are �-1,4 linked oligo andThe synthesis of glycosidic bonds, catalyzed in nature
polysaccharides of D-glucopyranose. The 3-D structureby glycosyltransferases, is central to many biological
has been determined (Figure 2) and the catalytic nucleo-processes. Simply in terms of quantity, it is the most
phile identified as Glu197 through trapping with 2-deoxy-significant reaction in the biosphere. Carbohydrates and
2-fluorodisaccharides and subsequent analysis by pro-
teolysis and ESI MS/MS tandem mass spectrometry
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Figure 1. Enzyme-Catalyzed Glycosidic Bond
Formation

(A) The transglycosylation reaction catalyzed
by retaining glycosidases in which a covalent
glycosyl-enzyme intermediate is intercepted
by the acceptor alcohol (in competition with
water); and (B) the reaction catalyzed by “gly-
cosynthases” whose enzyme-derived nu-
cleophilic carboxylate has been mutated to
glycine, serine, or alanine.

panded through substitution of the catalytic nucleophile ants [23]. Here we present a dissection of the H. insolens
Cel7B glycosynthases at kinetic and structural levels.with residues other than alanine. Serine and glycine mu-

tations generate glycosynthases whose prowess fre- The E197S glycosynthase variant displays markedly bet-
ter catalytic properties than the E197A mutant. The 3-Dquently outstrips that provided by the original alanine

mutant [15, 20–22]. Improved glycosynthases not only structure reveals the locations and interactions in both
donor (�1, �2) and acceptor (�1, �2) subsites (subsiteact more rapidly, but as a direct consequence, they are

able to transfer to a much wider array of acceptors nomenclature according to [6]), as well as revealing the
molecular basis for substrate inhibition. Cel7B E197Son a useful timescale, making them considerably more

versatile synthetic tools. In the case of the Agrobacter- exclusively forms �-1-4 linkages with cellobiosyl or lac-
tosyl fluoride donors, yet inspection of the structureium �-glucosidase enzyme, it was proposed that the

E358S mutant generates a more powerful enzyme as the reveals that this regioselectivity reflects fine structural
tuning in which the acceptor 4-OH is, surprisingly, notserine hydroxyl could hydrogen bond to the departing

fluoride atom [20]; indeed, a similar role could be envis- the closest atom to the anomeric carbon of the donor.
We conclude that both distance and angle criteria areaged for solvent water in the glycine glycosynthase vari-

Figure 2. 3-D Structure of the Cellobiose Complex of the Humicola insolens Cel7B (E197S) Glycosynthase

The protein topology is shown (helices, red; sheets, blue; coil, yellow) together with the molecular surface (wheat). Donor (�2, �1) sugars are
shown in gray, and acceptor (�1, �2) in yellow “licorice”. The figure is in divergent (“wall-eyed”) stereo.
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concentrations (Figure 3b) with a Ki of 173 � 17 mM,Table 1. Enzyme Kinetics for Cel7B Nucleophile Mutant
Catalyzed Condensation of Lactosyl Fluoride with PNP- presumably reflecting binding of �-LacF to the acceptor
Cellobioside subsites, as revealed by X-ray crystallography, below.

The E197S mutant is substantially faster than its ala-Mutation kcat (min�1)a KM(LacF) (mM) KM(PNPC) kcat/KM(LacF)

nine counterpart. While KM values remain similar (Table
E197A 24.2 � 0.6 0.87 � 0.05 7.87 � 0.61 27.8

1; KM [PNPC] 2.3 mM, KM [�-LacF] 1.1 mM), kcat increasesE197S 1080 � 23 1.12 � 0.13 2.26 � 0.16 964
to 1080 min�1 with a corresponding kcat/KM(LacF) of 964

a Apparent kcat derived from fixed LacF donor concentration of 10 min�1 mM�1. This represents a 34-fold increase in cata-
mM �-LacF with varying [PNPC]. lytic efficiency for the serine glycosynthase mutant, a

similar improvement to that previously observed for both
the Abg and Man2A-derived glycosynthases. In the casecrucial components of enzyme specificity, opening up
of the Abg enzyme, the improvement in efficiency ap-possibilities for future broadening of enzyme acceptor
pears to be derived solely from KM [20], whereas withrange through mutagenesis approaches.
Cel7B, as with Man2A [15], this improvement stems al-
most exclusively from kcat, which in the case of E197SResults and Discussion
is increased some 44-fold.

The E197A glycosynthase mutant of the H. insolens
Cel7B had previously been used in conjunction with 3-D Structure of the Cel7B E197S Glycosynthase
�-lactosyl fluoride (�-LacF) donor and a variety of ac- and Complexes with Cellobiose and Lactose
ceptors to produce oligosaccharides in 51%–100% yield The structure of free Cel7B E197S was determined by
[12]. Use of �-cellobiosyl fluoride led to polymerization molecular replacement from a hexagonal crystal form
and subsequent precipitation of “cello” (�-1,4 linked) at a resolution of 2.15 Å (see Experimental Procedures
oligosaccharides while the 3-D structure of the free en-

for details). The structure refined with Rcryst and Rfree of
zyme was determined at 1.75 Å resolution (PDB Code

0.18 and 0.22, respectively (Table 2), and was essentially
1DYM). In order to generate a more powerful enzyme

isomorphous with the free E197A and wild-type en-with improved kinetics and acceptor range, by analogy
zymes, indicating that the mutation had no significantwith work on the Agrobacterium Abg �-glucosidase [20]
effect on the 3-D structure of the protein.and the Cellulomonas fimi Man2A mannosidase [15], the

Cel7B presents a long, open, active-center “groove”E197S mutant was constructed and analyzed by kinetic
with sufficient space to accommodate approximatelyand structural methods.
eight monosaccharide binding sites, arranged �5 to �3
[6], but maximal hydrolytic activity of the wild-type en-Reaction Kinetics: E197S versus
zyme is achieved on reduced cellopentaoside sub-E197A Glycosynthases
strates, reflecting the significant contribution of fourThe catalytic constants for the condensation of �-LacF
subsites (�2 to �2) to hydrolysis. As seen with manywith p-nitrophenyl �-cellobioside (PNPC) were deter-
other carbohydrate-protein interactions, the enzymemined by monitoring the release of fluoride with a fluo-
provides a series of hydrophobic platforms for pyrano-ride ion selective electrode. Since no transfer is ob-
side binding, notably Trp347 and Tyr171 in the �2 sub-served to an acceptor with an axial 4-hydroxyl group,
site, Tyr147 in the �1 subsite, and Trp356 in �1. Theonly a single transfer event is assayed, that from �-LacF
equivalent hydrophobic platform in the �2 subsite isto the PNPC. On the timescale of the experiment, neither
provided by the aliphatic portion (CA-CB-CG) of theE197S nor E197A catalyzed the transfer of �-LacF to
side-chain of Asn237. At the center of this subsite bind-water; no above-background release of fluoride was
ing canyon lies, in the wild-type enzyme, the catalyticdetected in the absence of acceptor, and the reaction
nucleophile Glu197. In the glycosynthase variants, Glu197ceased following stoichiometric transfer of donor under
is replaced with alanine or serine with no disruption toconditions of limiting acceptor, all demonstrating that
the overall 3-D structure; the mutants are “isomorphous”the mutants do not catalyze transfer to water in a signifi-
with the wild-type protein. In order to dissect the protein-cant manner. The E197A mutant transfers �-LacF to
ligand interactions, the E197S variant was studied inPNPC with a kcat of 24.2 min�1, KM (PNPC) of 7.9 mM, and
complex with both lactose and cellobiose. RelativelyKM (�-LacF) of 0.87 mM, with a corresponding catalytic
poor diffraction from the hexagonal crystal form led usefficiency (kcat/KM(LacF)) of 27.8 min�1mM�1 (Figure 3A; Ta-

ble 1). Substrate inhibition is observed at high donor to harness a better diffracting form for complex studies.

Figure 3. Reaction Kinetics of Cel7B Glyco-
synthase

(A) PNPC acceptor kinetics and (B) LacF do-
nor kinetics for the Cel7B E197A mutant (see
Table 1 for full details).
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Table 2. Data and Structure Quality for the Humicola insolens Cel7B E197S Glycosynthase and Its Complexes

E197S Uncomplexed E197S Cellobiose E197S Lactose

Data
Radiation source ESRF, ID14-4 ESRF, ID14-1 ESRF, ID14-1
Space group P65 P21 P21

Cell dimensions a � b � 122.3 Å, a � 66.3 Å, b � 74.8 Å, a � 66.4 Å, b � 74.8 Å,
c � 82.62 Å c � 86.1 Å, � � 102.6� c � 85.8 Å, � � 102.5�

Number mols. in A.U. 1 2 2
Resolution (Å) 15-2.15 (2.23-2.15) 30-1.5 (1.55-1.5) 15-1.4 (1.45-1.4)
Completeness (%) 100 (99.9) 99.3 (97.4) 99 (96)
Rmerge 0.09 (0.35) 0.043 (0.32) 0.033 (0.30)
Multiplicity 8.9 (8.7) 3.5 (3.6) 3.6 (3.2)
I/�I 21 (7) 24 (3.8) 35 (3.5)

Refinement
Rcryst 0.18 0.16 0.15
Rfree 0.22 0.19 0.17
Rms on bond distances (Å) 0.018 0.010 0.011
Rms on bond angles (o) 1.68 1.56 1.58
Mean B protein (Å2) 25 16 14
Number waters (mean B/Å2) 330 (30) 793 (22) 642 (21)
Mean B ligand Å2 (�2,�1/�1,�2 subsites) N/A 9,10/20,26 (Amol) 10,10/30,36 (Amol)

10,10,16,21 (Bmol) 11,10/25,33 (Bmol)
PDB code 1OJI 1OJK 1OJJ

Outer resolution bin statistics are given in parentheses.

A monoclinic crystal form of Cel7B (E197S) (P21; ap- complexes are not equivalent. Steric factors, perhaps
the potential clash between the axial galacto 4-OH ofproximate cell dimensions, a � 66 Å, b � 75 Å, c � 86 Å,

� � 103�) diffracting to beyond 1.4 Å resolution proved lactose with the side-chain of Gln175, prevent lactose
binding in the “true” �1 and �2 subsites. Instead, it isamenable to ligand binding studies. Synchrotron data

were collected to 1.5 Å on Cel7B (E197S) in complex rotated slightly and displaced approximately 1.7 Å “out”
of the active center, spanning the “�1.5 to �2.5” sub-with cellobiose and to 1.4 Å in complex with lactose

(Table 2). Both cellobiose and lactose complexes dis- sites (Figure 4C). This explains, in part, why lactosides
are not acceptor substrates for Cel7B. Given that lactoseplay essentially identical interactions in the donor �2

and �1 subsites. Both �1 and �2 glycosyl moieties bind in this position blocks productive binding in these ac-
ceptor subsites, it is extremely likely that this bindingin their undistorted 4C1 (chair) conformations and are

well-ordered, as reflected in low temperature factors of mode is responsible for the substrate inhibition (Ki �170
mM) observed at high donor concentrations. That thearound 10 Å2 for the �2/�1 subsite units of the cello-

biose and lactose complexes, respectively (Table 2). binding is comparatively weak is also reflected in poor
electron density (Figure 4B) and consequent tempera-There is no steric hindrance to lactose binding, consis-

tent with the prowess of lactosyl fluoride as a donor ture factors around 30–40 Å2 for the displaced lactose,
compared to 20–25 Å2 for cellobiose bound in thewith KM values around 1 mM. Both lactose and cellobiose

bind as their �-anomers (Figure 4), mimicking the productive �1 and �2 subsites.
�-glycosyl fluorides of the glycosynthase reaction.
The �2 and �1 subsite interactions feature hydrophobic Catalysis by Cel7B E197S Glycosynthase

The acceptor and donor site interactions of Cel7B“stacking” with Trp347 and Tyr147, and in the �1 subsite
the 6, 3, and 2 hydroxyls hydrogen-bond to Trp347 NE1, (E197S) with cellobiose occupying the �2/�1 and �1/�2

subsites cast provocative new light on glycosynthaseAsp173 OD2, and Gln175 NE2, respectively. This latter
interaction, between the amide hydrogen and the 2-OH, catalysis. The Cel7B glycosynthase forms �-1,4 bonds

exclusively using lactosyl and cellobiosyl donors andis reminiscent of that seen (and known to be important
for catalysis) in the structurally unrelated glycosidases gluco-configured acceptors (regio-selectivity is charac-

terized in [12]), a reaction which demands catalytic basefrom clan “GH-A.” Consistent with the “syn” protonation
trajectory [24], the catalytic acid/base Glu202 interacts assistance from Glu202. In the Cel7B E197S cellobiose

complex, however, the acceptor O4 is not the closestwith the 6-OH of the �1 subsite glucosyl moiety. All
these interactions of the �1 and �2 subsites are essen- residue to Glu202; indeed, it lies as much as 3.9 Å from

this group compared to 3.3 Å for O3, an atom whichtially identical to that described for the distorted thio-
oligosaccharide “Michaelis” complex of the related does not act as an acceptor nucleophile. Furthermore,

O4 lies 4.4 Å from the anomeric C1 of the donor, greaterCel7B from Fusarium oxysporum [25]. The E197S mutant
generates sufficient space to accommodate the axial than the sum of their van der Waals’ contacts (compared

to 3.3 Å for the O3 position), and again this looks bothanomeric hydroxyl of an �-glycoside, yet the serine hy-
droxyl does not make a direct interaction with anomeric suboptimal for catalysis and more suggestive of �-1,3

bond formation (not observed) [12]. One possibility ishydroxyl, instead lying some 3.8 Å distant. The implica-
tions of this for catalysis are discussed below. that the observed position of the acceptor substrate in

the crystal structure is not representative of the initialIn the acceptor subsites, lactoside and cellobioside
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Figure 4. Observed Electron Density and Interactions for the Cel7B (E197S)

(A) Cellobiose and (B) lactose complexes. Electron density shown is a REFMAC maximum likelihood-weighted 2Fobs-Fcalc synthesis contoured
at approximately 0.47 and 0.44 electrons/Å3, respectively. The figures are shown in divergent (wall-eyed) stereo. (C) Schematic diagram of
the Cel7B (E197S)-ligand interactions. Only the �1 subsite interactions (from the cellobiose complex) are given in their entirety, and the
approximate position of the lactose moieties is shown for reference in blue.

encounter complex between Cel7B and its substrates, early, distorted, product complex in the direction of syn-
thesis. The donor positions and interactions betweenalthough both donor and acceptor positions are similar

to the trapped “Michaelis” complex with nonhydrolysa- these two complexes are similar, save the �1 subsite
4C1→1S3 distortion of the thio-oligosaccharide complex.ble thio-oligosaccharide for the related F. oxysporum

Cel7B (formally EG1) [25], which would represent an In the �1 subsite, the planes of the two glucosyl moieties
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of cellobiose are identical, although the glucosyl moiety garded as a model of the glycosynthase bound �-glyco-
syl fluoride, can occur by transfer of the 2-fluoro glycosylof the F. oxysporum Cel7B thio-oligosaccharide com-
moiety to a competing acceptor glycoside (ktrans) (Figureplex is approximately 0.5 Å closer to the catalytic acid
1A) or by hydrolysis (kH2O). Table 3 lists reactivation pa-than the equivalent glucoside of the Cel7B E197S com-
rameters for a number of retaining glycosidases and theplex. Indeed, even in the thio-oligosaccharide complex
results of glycosynthase conversions attempted thuswith the F. oxysporum Cel7B, the closest �1 subsite
far. Although this is only a partial survey, glycosidasesatom to both C1donor and Glu202 (acid/base) is the O3 and
that yield active glycosynthases appear to have twonot the O4 of the acceptor. Given these counterintuitive
reactivation characteristics: high rate constants fordistances, it would appear that regio-selectivity for 1,4
transfer to an acceptor (ktrans 	 10�2 min�1) and also highbond formation appears to stem not solely from distance
selectivity for transfer to acceptor over water (ktrans/criteria, but from the angle of nucleophilic attack. The
kH2O 
 20).O4…C1-O1 (virtual) bond angle is 173�, close to the 180�

Abg and Cel7B clearly display these two characteris-required for in-line nucleophilic substitution. While O3
tics for reactivation, and both enzymes were convertedis closer to both the acid/base and C1 of the donor, its
to effective glycosynthases upon mutating the nucleo-potential angle of attack is considerably less optimal
philes to alanine. The Streptomyces lividans CelB [38]than that possible for O4.
and Cellulomonas fimi Man2A [15] are borderline cases,In the donor site, where the serine glycosynthase mu-
for while the absolute rates for transfer to acceptors aretant is approximately 35 times more efficient, there is
high (
10�2 min�1), the selectivities for transfer to anno direct interaction between the serine hydroxyl and
acceptor over water are relatively modest (ktrans/kH2O �the axial O1 of the donor. If the extra benefit of the serine
10–20). The corresponding alanine nucleophile mutantsmutant does come from the potential of a stabilizing
of Man2A and CelB display weak glycosynthase activity,interaction between departing fluoride and serine hy-
but in both cases the serine mutants are more effectivedroxyl, as has been proposed [20], then this feature may
catalysts. In contrast, wild-type Thermosporum saccha-be expressed solely at the transition state, which will
rolyticum �-xylosidase [39] and Bacillus circulans �-galac-indeed be of a highly dissociative character and may
tosidase [40] have impressive transglycosylation activi-well place the fluoride closer to the serine hydroxyl.
ties, but conversion to the alanine or serine nucleophile

Alternatively, the position of the glycosyl fluoride may
mutants was unsuccessful in producing glycosynthase

not be appropriately mimicked by the cellobiosyl moiety.
(D. Vocadlo and S.G.W., unpublished data). In the case

Cel7B (E197S) appears to be the most efficient glycosyn- of the xylosidase, high selectivity is observed with disac-
thase described to-date, with a catalytic efficiency charide acceptors (ktrans/kH2O � 80 with xylobiose), but
around 1000 min�1mM�1; but even with the benefit of the low rate constants for transfer to an acceptor (kreact �
structural hindsight, it is difficult to dissect reactivity 10�5 to 10�3 min�1) appear to legislate against glycosyn-
contributions that must be expressed at the transition thase activity. This example raises an unavoidable ques-
state as opposed to the ground state. Additional kinetic tion. How are impressive transglycosylation qualities
assistance to an axial leaving group of the donor might in the wild-type enzyme lost upon trapping the inter
also be provided by Asp199 in Cel7B, a group likely to mediate as a 2-fluoro glycosyl enzyme or mutating
be appropriately protonated given its interaction with the nucleophile to alanine? This may be a reflection of
the O5 atom of the pyranoside ring in these glycosyn- the relative reactivities of the glycosyl donor in each
thase complexes and its normal hydrogen bond dona- case (glycosyl enzyme, 2-fluoro-glycosyl enzyme, and
tion to the carboxylate nucleophile of the wild-type fam- �-glycosyl fluoride). Another feature evident is the high
ily GH-7 enzymes. Intriguingly, this aspartate completes, binding constants measured for many acceptors. Yet,
along with the nucleophile and acid/base, a cluster of despite poor binding, these acceptors often greatly ac-
three carboxylates also found in similar location in family celerate turnover of the 2-fluoro-glycosyl enzyme inter-
GH-16, which provides the powerful Bacillus lichini- mediates. Indeed, the turnover of the Abg intermediate
formis �-1,3-1,4 glucanase-derived glycosynthase [11]. increases nearly 3000-fold with PNP �-glucoside as ac-
Given these interactions, it is pertinent to consider what ceptor. The important role of the acceptor at the transi-
makes a good glycosynthase and whether one can pre- tion state is also responsible for the reduced transfer
dict such activity a priori? efficiency to water displayed by these mutants. Potential

hydrolytic reactions in glycosynthases resulting from
direct attack of water on the glycosyl fluoride are suffi-

What Makes an Efficient Glycosynthase? ciently compromised that they are insignificant com-
It has been observed a number of times that simple pared to the preferred transglycosylation reaction. The
replacement of the catalytic nucleophile of a retaining latter process is facilitated by the binding interactions
glycosidase, particularly if the mutation is to alanine, with the acceptor sugar in the �1 site in much the same
does not always produce a glycosynthase. This is true way that binding interactions at that site are important
even when the wild-type enzyme shows strong transgly- for the cleavage of chemically unreactive oligosaccha-
cosylating properties. The reasons are unclear, but some rides. These interactions result in the stabilization of the
insight into the glycosynthase potential of a wild-type transition state for glycosyl transfer.
retaining glycosidase may be gleaned by examination
of the kinetic parameters for turnover of the glycosyl- Significance
enzyme intermediate, most easily achieved following
trapping as the 2-fluoro glycosyl enzyme. Reactivation Chemical glycobiology is one of the most rapidly ex-

panding fields of modern science, yet such work andof the trapped covalent intermediate, which may be re-
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concentration for �-LacF that exhibited minimal substrate inhibitionbiomedical investigation require access to large quan-
(10 mM). Subsequent experiments used a fixed 10 mM concentrationtities of specifically designed and synthesized oligo-
of �-LacF, with [PNPC] varying between 1 and 37.8 mM. For donorsaccharides. Enzyme-catalyzed synthesis using “gly-
kinetics, [PNPC] was fixed at 20.6 mM, with [�-LacF] varying be-

cosynthase” mutants provides a powerful tool for tween 0.1 and 122 mM. Curve fitting, taking into account substrate
oligosaccharide synthesis. The 3-D structure and ca- inhibition where appropriate, was performed with GraFit 5.0 [48].
talytic dissection of the H. insolens Cel7B enzyme re-
veals the fine structural tuning that contributes to re- Crystallization, Data Collection, and Processing

Both hexagonal rods and monoclinic plates of Cel7B grow fromgio-selectivity, opening up the possibilities for future
similar conditions in 2–4 �l hanging drops with 20 mg/ml protein,tailoring of enzyme specificity through additional mu-
20 mM TRIS-HCl buffer (pH 7–8.5), and 15%–30% polyethylene gly-tation. Wider evidence suggests that the qualities of
col 4000 as precipitant. The hexagonal form grows as single rods,

a “good” acceptor appear to stem from kinetic (or but diffracts more weakly. The monoclinic form, used for complex
reactivity) effects that are manifested primarily in the studies, diffracts to higher resolution but frequently grew as clusters
transition state, rather than ground state binding. of plates, and inclusion of 5% DMSO helped obtain more single

plates. Complex structures were obtained by soaking crystals in 50Given that the structure of a good acceptor is difficult
mM of the appropriate ligand for 1 hr prior to cryo-storage. Singleto predict, a future challenge is to develop “acceptor
crystals were frozen with the inclusion of 20% v/v glycerol as cryo-screens” for high-yielding transglycosylation reac-
protectant, and data was collected on ESRF ID14-EH1 beamline

tions [41]. Such approaches will also be necessary to (Mar CCD detector) for the lactose and cellobiose soaks and ID14-
discover new glycosynthase mutants [21, 22] that raise EH4 (ADSC Quantum 4 CCD detector) for the E197S uncomplexed
the reactivity of the �-glycosyl fluoride donor to that of rods. All data were processed and reduced using the HKL suite of

programs [49].the wild-type glycosyl-enzyme intermediate and allow
full harnessing of engineered variants for glycosidic

Refinementbond synthesis on a large scale. Structural analyses,
The different forms of Cel7B were solved by molecular replacementin combination with kinetic data, will inform future
using the program AMORE from the CCP4 suite [50] with an outerengineering of glycosynthases that expand the syn-
radius of Patterson integration of 25 Å and data between 20 and

thetic repertoire and stimulate research in glycobi- 3.5 Å. The E197A mutant (PDB code 1dym.pdb) was used as the
ology. search model. All further computing was performed using the CCP4

suite unless otherwise stated. For the refinement of each structure,
Experimental Procedures 5% of the observations were immediately set aside for cross valida-

tion analysis [51] and were used to monitor various refinement strat-
Mutagenesis and Protein Production egies such as the weighting of geometrical and temperature factor
The construction and purification of the E197A mutant has been restraint and the insertion of solvent water during maximum likeli-
described elsewhere [12]. For the E197S mutant, the mutational hood refinement using REFMAC program [52]. Manual corrections
changes (GAG→TCG) necessary to introduce the E197S substitution of the model using the X-FIT routines of the program QUANTA
in Humicola insolens Cel7B were produced by the overlap extension (Accelrys, San Diego, CA. USA) were interspersed with cycles of
PCR (OE-PCR) method [42, 43]. The plasmid pHW704eg1 served maximum likelihood refinement. “Riding” hydrogen atoms were in-
as the DNA template for the OE-PCR mutagenesis. This plasmid is cluded for structures with data beyond 1.5 Å resolution and only
an Escherichia coli-Aspergillus shuttle expression vector that carries when their positions were definable. Figure 2 was drawn with PyMOL
the H. insolens Cel7B coding region, the DNA sequence for its own [53] and Figure 4 with BOBSCRIPT [54].
secretion signal peptide, as well as an Aspergillus �-amylase pro-
moter and glucoamylase terminator for transcriptional control of the
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